Eyewitness Accounts of Females and Males

Peter A. Powers, Joyce L. Andriks, and Elizabeth F. Loftus
University of Washington

In two experiments, college students looked at a series of slides depicting a wallet snatching (Experiment 1) or a fight (Experiment 2) and then took a multiple-choice test of accuracy for the details of that incident. One day later, they read a version of the incident that for some of them contained misleading information about certain objects in the scene. Finally, a test was administered to measure the extent to which the misleading information was incorporated into the subject's recollections. The major results of interest concerned sex differences: Women were more accurate and more resistant to suggestion about female-oriented details, whereas men were more accurate and resistant to suggestion about male-oriented details. This result is related to the general tendency for accuracy on a specific item to lead to an improved ability to resist a suggestion about that specific item. Additional analyses indicated that overall accuracy was neither related to intelligence (as measured by a college entrance test) nor to specific abilities, such as verbal or spatial ability.

When a person witnesses an important event such as a crime or a traffic accident, that person is often asked to recall—usually in precise detail—the events that took place. In situations such as these, the tiniest details become important: whether the traffic signal was red or green, whether the sports car crossed the double line or not, whether the truck stopped fully at the stop sign or failed to stop. It is not uncommon for two witnesses to the same incident to give widely differing, and even contradictory, accounts. Presumably, part of the reason why this occurs is that people vary in their abilities to perceive accurately and recall complex events to which they have been witnesses. Furthermore, people vary in suggestibility, that is, the extent to which they will come to accept a piece of postevent information and incorporate it into their recollection.

In past research, subjects have been shown films of complex events followed by postevent information. In some cases the postevent information supplements a previously acquired memory, whereas in other cases, it provides information that is contradictory to what was actually seen. An example of the first type is an experiment in which subjects saw a film of a traffic accident and were subsequently asked the question "How fast was the white sports car going when it passed the barn while travelling along the country road?" No barn actually existed, but subjects who received this false information were over six times as likely as control subjects to later report that they had seen the nonexistent barn (Loftus, 1975). An example of the second type is an experiment in which subjects saw a series of slides depicting an auto–pedestrian traffic accident. Some saw the automobile go through a stop sign, whereas others saw it go through a yield sign. Some time later, the subjects were asked a question that presupposed the existence of the opposite sign (e.g., Did another car pass...
the red Datsun while it was stopped at the stop sign?). When tested later on their recollection of the sign, substantial numbers of subjects reported that they had seen the incorrect sign that was mentioned on their questionnaire (Loftus, Miller, & Burns, 1978).

People vary in their accuracy and their tendency to accept a misleading suggestion. It is important to determine whether there are factors within an individual that relate to how good a witness (how accurate, how suggestible) that individual will be. Oftentimes, there are several witnesses to the same incident, and an investigator receives information from all of them. Should their accounts be weighted equally? What if Witness 1 says that the light was red, whereas Witness 2 says that it was green? It would be of enormous practical significance to know about any factors that might exist that would tend to favor the testimony of one individual over another. These factors could then be used by an investigator in deciding how much weight to give the testimony of any individual witness.

In the experiments reported in this article, subjects looked at a series of slides depicting a wallet-snatching incident. Then they took a test designed to measure their accuracy for the details of the incident. Following this, they read a version of the incident that for some of them contained misleading information about certain objects in the series of slides. Finally, a test was administered to measure the extent to which the misleading information was incorporated into the subjects' recollections. We examined the relationship between eyewitness performance and two individual factors: intelligence and gender. We had some reason to suspect that intelligence might be related to eyewitness performance. Howells (1938) found a positive correlation of .27 between accuracy and intelligence, indicating that more intelligent individuals tended to perform more accurately on a test of eyewitness ability. Burtt (1948) noted a negative correlation of -.55 between intelligence and suggestibility, indicating that the more intelligent individuals tended to be less suggestible. Since no thorough examination of the relationship between this mental capacity that we call intelligence and eyewitness ability has been conducted since these early observations, we felt it important to examine the role of this factor.

Much more research has concerned the performance of women versus men. In terms of accuracy, the results have been equivocal. For example, some eyewitness studies have shown that females perform better than males (e.g., Ellis, Shepherd, & Bruce, 1973; Lipton, 1977; Witryol & Kaess, 1957), others have shown that females perform more poorly (e.g., Stern, 1910, and as reviewed by Whipple, 1909; Trankell, 1972), and still others indicate no differences in the accuracy of women and men (e.g., Bird, 1927; Cady, 1924; Howells, 1938; McKelvie, 1976). These apparent inconsistencies prevented us from forming any a priori hypothesis. In terms of suggestibility, the old belief was put clearly by Stern back in 1910 when he spoke about the impact of suggestive questions, that is, those questions "for which a particular answer is readier than others." Stern asserted that "suggestive questions of this sort operate with especial force in the case of young and uneducated persons; more with women than with men" (p. 273). A good deal of the work in the related area of influenceability of attitudes (Eagly, 1978) shows women to be more suggestible than men, but, as we shall see, there may be a simple explanation for this result that has little to do with any inherent tendency for women to be particularly suggestible.

In sum, the present research examined the role of intelligence and gender in the performance of eyewitnesses to complex incidents. In Experiment 1, we found little to support the hypothesis that intelligence is related to performance, but an interesting sex difference result emerged. It appeared that women were more accurate and more resistant to suggestion about female-oriented details, whereas men were more accurate and resistant to suggestion about male-oriented details. We followed up this observation in Experiment 2.

Experiment 1

Experiment 1 examined the role of mental ability in eyewitness performance. As a measure of mental ability, we used performance on the Washington Pre-College Test (WPC), an
aptitude test similar to the Scholastic Aptitude Test (SAT). The WPC is routinely given to college-bound high school juniors in the State of Washington. The WPC test battery is composed of nine intelligence-related subtests and three composite scores derived from them. The nine subtests are as follows. Vocabulary, English Usage, Spelling, Reading Comprehension, Quantitative Skills, Applied Mathematics, Mathematics Achievement, Spatial Ability, and Mechanical Reasoning. The three composite scores are as follows: English composite (vocabulary, spelling, and reading comprehension), verbal composite (English usage, vocabulary, spelling, and reading comprehension), and the quantitative composite (math achievement, quantitative skills, and applied mathematics). All of these measures are standardized with a mean established at 50 and a standard deviation of 10.

In Experiment 1, we examined the relationship between the WPC test scores and both eyewitness accuracy and suggestibility. Previous research has indicated a substantial relationship between WPC test scores and performance on various other cognitive tasks (Hunt, Frost, & Lunneborg, 1973; Hunt, Lunneborg, & Lewis, 1975). Subjects with higher cognitive abilities to process, store, and retrieve information might have developed better memory strategies and, therefore, be better eyewitnesses. For instance, it is possible that higher spatial ability might facilitate initial perception, whereas higher verbal ability might facilitate written test taking or verbal responding. Similarly, other WPC test scores could reflect differences in subjects’ ability to describe the witnessed event accurately and with the least suggestive interference.

Method

Subjects. The subjects were 25 female and 25 male undergraduate students at the University of Washington. They were paid for their participation in the experiment. WPC scores were available on each subject.

Procedure. Subjects were run in groups ranging in size from four to six. They were told that they would see a series of slides and would be asked a few questions about the slides. The overall procedure included four major phases: (a) viewing the slides, (b) filling out an accuracy questionnaire, (c) reading a suggestibility paragraph, and (d) taking a final test.

1. Slides: A sequence of 24 slides depicting a wallet-snatching incident in a small town was shown to the subjects. Each slide was presented for 5 sec.

The slide sequence opens with a young woman walking down a busy street. She meets a friend and stops to talk for a moment. As the woman continues down the street, she is approached by a man wearing a cowboy hat who bumps into her, causing her to drop her shopping bag. The man and woman both stoop to pick up some articles that had fallen out. When the woman is looking the other way, the man reaches into her shoulder bag and takes her wallet. The woman does not notice and the two part. Soon, the victim becomes aware that her red wallet is missing, at which point two other women cross the street toward her and gesture in the direction of the fleeing man.

2. Accuracy questionnaire: After a short filler activity in which subjects looked at a color chart and provided names for various colors, the subjects filled out a questionnaire designed to determine accuracy. The questionnaire consisted of 30 items that addressed diverse details of the wallet-snatching incident. It asked about details such as information about the central characters, their clothing and actions, the surrounding environment, extraneous people, and buildings and traffic. A separate group of 100 undergraduate volunteer subjects were used to test the reliability of items on this questionnaire. Questions found to have poor reliability (≤.60) were successively revised with new items added to create the final 30-item list. The 30 items were declarative sentences requiring a phrase or word to be completed. To complete these sentences, a five-alternative multiple-choice test was given. For example, one question was “The victim’s friend was carrying (a) a newspaper, (b) a shopping bag, (c) a notebook, (d) an umbrella, (e) none of the above.” For each item, the subjects indicated their confidence in their answers using a 3-point rating scale in which 1 indicated that the subject was guessing and 3 indicated high confidence. After completing the questionnaire, a filler activity was performed and subjects were asked to return the following day.

3. Suggestibility paragraphs: At the beginning of the second session, all subjects were given suggestibility paragraphs to read. Each statement contained a version of the incident that was allegedly written by a psychology professor who had seen the slides for 30 sec each. To conceal the purpose of this task, the subjects were asked to rate the paragraphs on certain attributes such as clarity of writing. Two versions of the paragraph were constructed, differing only in their description of four critical items. The control version contained an accurate description of these four items, whereas the experimental version contained erroneous information about the four critical items. Thus, the control version might correctly refer to the green notebook that was being carried by the victim’s friend, whereas the experimental version erroneously called it a blue notebook. After rating the paragraph, the subjects completed a 10-min filler activity and then were given a final test on the details of the slides.

4. Final test: The final test contained 20 items. The items were declarative sentences lacking a phrase or word. These were to be completed with one of the three choices listed with it.
Table 1
Correlations Between Accuracy/Suggestibility and the Various Cognitive Measures

<table>
<thead>
<tr>
<th>Subtest or composite</th>
<th>Mean subtest score</th>
<th>(r) with accuracy</th>
<th>(r) with suggestibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary</td>
<td>54.9</td>
<td>-.06</td>
<td>-.05</td>
</tr>
<tr>
<td>English usage</td>
<td>52.6</td>
<td>.05</td>
<td>.19</td>
</tr>
<tr>
<td>Spelling</td>
<td>52.1</td>
<td>.00</td>
<td>.16</td>
</tr>
<tr>
<td>Reading comprehension</td>
<td>56.5</td>
<td>.06</td>
<td>-.26</td>
</tr>
<tr>
<td>Quantitative skills</td>
<td>59.6</td>
<td>-.11</td>
<td>-.20</td>
</tr>
<tr>
<td>Applied mathematics</td>
<td>58.5</td>
<td>.20</td>
<td>-.07</td>
</tr>
<tr>
<td>Mathematics achievement</td>
<td>59.8</td>
<td>.08</td>
<td>.00</td>
</tr>
<tr>
<td>Spatial ability</td>
<td>56.5</td>
<td>.10</td>
<td>.10</td>
</tr>
<tr>
<td>Mechanical reasoning</td>
<td>52.9</td>
<td>.02</td>
<td>.03</td>
</tr>
<tr>
<td>English composite</td>
<td>53.7</td>
<td>.01</td>
<td>.12</td>
</tr>
<tr>
<td>Verbal composite</td>
<td>54.9</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td>Quantitative composite</td>
<td>59.9</td>
<td>.11</td>
<td>-.10</td>
</tr>
</tbody>
</table>

\(a \) \(N = 50. \)
\(b \) \(n = 25. \)

Results

Accuracy questionnaire scores. The accuracy scores ranged from 9 to 24 for the experimental and control groups combined. The distribution was relatively normal, with a mean score of 16.66 correct and a standard deviation of 3.71. The experimental and control groups did not differ in their mean scores (16.48 vs. 16.84), indicating that both groups were drawn from the same population and that differences found later between them were the result of experimental manipulations. Subjects were more confident of their correct answers than of their incorrect answers on the accuracy questionnaire. The mean confidence for correct answers was 2.48, and for incorrect answers it was 1.84, \(t(48) = 5.04, p < .001. \) The split-half reliability of this test was .67.

Accuracy and cognitive measures. The correlations between accuracy and the cognitive measures were computed using data from the experimental and control groups, that is, 50 subjects. These correlations, listed in Table 1, reveal that accuracy did not correlate significantly with any measure provided by the WPC test. Given that the correlations were conducted using all of the 50 subjects, a correlation of .28 would be needed to reach significance. The highest correlation in the set, that between accuracy and the applied mathematics, was only .20.

Suggestibility scores. The suggestibility score for each subject was derived by examining performance on four critical items on the final test. Erroneous information about these items was given only to the experimental group. Both the experimental and control subjects were assigned a score ranging from 0 to 4 that indicated how many of these incorrect details a subject believed had actually been seen. As Table 2 shows, the experimental group gave an average of 1.56 erroneous answers suggested to them, whereas the control group gave an average of .16, \(t(48) = 6.11, p < .001. \) The suggestibility scores in the experimental group ranged from 0 to 4, whereas in the control group, no subject had a score higher than 1. Additionally, the control subjects were correct in this experiment control subjects got correct information that undoubtedly contributed to the reason so few of them selected the suggested answer. In many other experiments, such as in Loftus (1975), the control subjects were given no subsequent information; the responses of those subjects are consistently less modified than those who have received misleading information.

Table 2
Responses to the Four Critical Suggestibility Items in Experiment 1

<table>
<thead>
<tr>
<th>Response</th>
<th>Experimental group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>.84</td>
<td>2.72</td>
</tr>
<tr>
<td>Suggested answer</td>
<td>1.56</td>
<td>.16</td>
</tr>
<tr>
<td>Other incorrect answer</td>
<td>1.60</td>
<td>1.12</td>
</tr>
</tbody>
</table>

\(^1 \) In this experiment control subjects got correct information that undoubtedly contributed to the reason so few of them selected the suggested answer. In many other experiments, such as in Loftus (1975), the control subjects were given no subsequent information; the responses of those subjects are consistently less modified than those who have received misleading information.
on these four items significantly more often than were the experimental subjects, 2.72 versus .84, $t(48) = 21.68$, $p < .001$. The two groups did not differ on their answers to the noncritical items ($t < 1$).

Suggestibility and cognitive measures. The correlations between suggestibility and the cognitive measures were computed using data from only the experimental groups, that is, 25 subjects. These correlations are also listed in Table 1. Again, no significant correlations were found between suggestibility and any of the measures provided by the WPC test. Since the correlations were conducted using only the 25 experimental subjects (who provided suggestibility data), a correlation of approximately .39 would be needed to reach significance. The highest correlation in the set in absolute value, that between suggestibility and reading comprehension, was only -.26.

Accuracy and suggestibility. The relationship between accuracy and suggestibility was computed using only the data from the 25 experimental subjects. The equation of the best fitting regression line is $S = -.63 + .13A$, in which S is the suggestibility score and A the accuracy score. The correlation between the two sets of scores was .348, which did not reach significance. It is worth noting that this correlation is in the direction opposite that which was expected. The positive correlation indicates that subjects with higher accuracy scores tended to receive higher suggestibility scores. However, it must be kept in mind that this relationship did not achieve significance. In fact, removal of one particular subject’s data caused the correlation to drop to .031.

Item-specific accuracy and suggestibility. Two questions, one in the accuracy questionnaire and one in the suggestibility questionnaire, referred to the same detail. The purpose of this arrangement was to see whether accuracy on a specific item would lead to resistance in suggestibility about that specific item. Thus, for example, in the accuracy questionnaire, subjects were asked whether they remembered the vehicle that passed the thief and whether they remembered the object that the victim’s friend was carrying. The former was a brown truck, whereas the latter was a green notebook. The suggestibility paragraph presented to the experimental group gave incorrect information about the color of these objects. We expected to find that experimental subjects who noted the correct objects on their accuracy questionnaire would be less likely to be influenced by the erroneous suggested information when answering questions on their final test. This expectation was confirmed. Twenty-two percent of the experimental subjects who correctly knew that a truck drove past the thief were able to answer correctly a question on the final test concerning the color of the truck. Only 12.5% of those who had initially been incorrect were correct on the final test. For the notebook item, the effect was even stronger. Twenty-nine percent of those who had initially been correct on this item were correct on the final test item. Not a single subject who had been incorrect about the notebook was correct on the final test item concerning this object. Breaking down the data in this way created too few subjects for us to be able to analyze these percentages in any meaningful way.

Sex differences. A small difference in accuracy between the sexes approached but did not reach significance ($t = 1.50$), with females more accurate than males. No sex differences were found in confidence rating either when correct ($t = .82$) or when incorrect ($t = .61$). Significant differences in accuracy for males and females were found with regard to the type of information a question asked for. Women were more accurate than men on questions dealing with women’s clothing or actions, $t(48) = 2.88$, $p < .05$, whereas men were more accurate on details about the thief’s appearance, $t(48) = 3.39$, $p < .05$, and on questions dealing with the surroundings, $t(48) = 3.98$, $p < .05$. Finally, female subjects were found to be significantly more suggestible than male subjects, $t(23) = 2.37$, $p < .05$.

Discussion

To summarize the results, there was no relationship between the measures of cognitive ability, namely the WPC scores, and either accuracy or suggestibility. This was unexpected. It might have been expected a priori that a witness who performs at a higher level on tests of verbal comprehension, spatial ability, and so forth, would be a more observant, reliable witness, one who is better able to resist suggestive influences. No evidence for such relationships was found in the present study.
One reason for the failure to find a relationship might be that the sample of subjects we used had relatively high WPC scores. Since the University of Washington's student body is for the most part selected for scholastic ability, the subjects in our experiment tended to be relatively high in cognitive ability as compared to the general population. Recall that the mean value for these subtests across all college-bound juniors is 50. The means for our sample are all higher than 50, ranging from 52.1 to 59.8, as can be seen in Table 1. It is entirely possible that an experiment conducted with subjects possessing a wider range of cognitive abilities would produce very different results.

Overall accuracy did not correlate with overall suggestibility. However, item-specific accuracy appears to be related to ability to resist suggestive influences about that item. When a witness—subject accurately described the object that the victim’s friend was carrying as a notebook or that the vehicle near the wallet-snatching scene was a truck, a misleading description of its color was less likely to be accepted than if it had not been noticed in the first place. By contrast, if the item was not originally recalled on the accuracy questionnaire, it was relatively easier to convince the subject of both the existence of the object and the properties suggestively ascribed to it. Although this conclusion is at this point tentative, it makes intuitive sense that when a witness gets a good look at some particular item, more solid information will be available in memory about that item, and the witness will be more resistant to false suggestions pertaining to the item. This reasoning could explain the sex difference in suggestibility. Recall that women were more accurate on details about the appearance and actions of women, whereas men were more accurate on details about the thief and about the overall surroundings. As it happened, three of the four critical items about which we attempted to mislead subjects tended to be male-oriented items. We found that males were more resistant to the misleading suggestion about these items. These observations led to the hypothesis that women might be more accurate and more resistant to suggestion about female-oriented details, whereas men might be more accurate and more resistant to suggestion about male-oriented details. This might happen because women and men would pay more attention to items that catch their interest, and they would consequently store more or better information in memory about those items. The purpose of Experiment 2 was to follow up the hint provided by the results of Experiment 1 that systematic sex differences in accuracy and suggestibility would be a result of special item peculiarities.

Method

Two hundred persons, 100 men and 100 women, participated in this study. They were given course credit, and they participated in groups ranging in size from 2 to 7.

Selection of critical items. Fifty subjects (25 men and 25 women) participated in a preliminary procedure designed to select a set of items that would be likely to be noticed by men and a second set for women. The 50 subjects were shown a series of slides presented at the rate of one every 5 sec and were then given an accuracy test that contained 25 items. A different sequence of slides was shown than that used in Experiment 1 to provide generalizability for our previous results. The slide sequence used in Experiment 2 opens with a group of people sitting together on the grass. A man and a woman leave the group and begin walking through a parking lot where they spot two individuals who are apparently fighting with each other. The man rushes in to stop the fight while the woman goes off to a phone booth, apparently calling for help.

After a short filler activity, the subjects filled out a
25-item questionnaire that addressed diverse details of the fighting incident. The 25 items were declarative sentences requiring a phrase or word to be completed with one of five alternative phrases listed with the sentence.

From the answers to these questions we selected four critical items that met the following criteria:

1. For two items, male respondents were substantially more accurate than female respondents. The male percentage correct was greater than 80, whereas the females were correct less than half the time.
2. For two different items, females outperformed males by a similar margin.

Two of the four critical items to emerge were questions about the female main character, her description or actions. The other two questions concerned the male main character and a nearby automobile.

Procedure. The remaining 150 subjects (75 men and 75 women) were told that they would see a series of slides and that they would then be asked to answer a few questions. As in the previous experiment, the overall procedure included four phases: viewing the slides, filling out a 25-item accuracy questionnaire, reading a suggestibility paragraph, and taking a final test.

The slide sequence was shown to subjects in groups ranging in size from three to seven. They were presented at a rate of 5 sec per slide. After a short filler activity in which subjects looked at a color chart and provided names for various colors, the subjects filled out an accuracy questionnaire. This consisted of 25 items asking for information about the central characters, their clothing and actions, about the surrounding environment, people, buildings, and so forth. A separate group of undergraduate volunteer subjects were used to test the reliability of items on this questionnaire. Questions found to have poor reliability (<.60) were successively revised with new items added to create the final 25-item list. The items were declarative sentences requiring a phrase or word to be completed. To complete these sentences, a five-alternative multiple-choice test was given.

One full day later, subjects returned for a second session. At this time, they were given a suggestibility paragraph to read. They were told that this paragraph was a version of the incident written by a professor who had seen the slides for 30 sec apiece. The paragraph contained four pieces of misleading information; incorrect details were provided about the four critical items.

The final test consisted of 18 items. The items were declarative sentences lacking a phrase or word. These were to be completed with one of the three choices listed with it. After the final test, the subjects were told the true purpose of the experiment and were asked some questions designed to assess suspicion. Only two subjects, one male and one female, indicated any accurate suspicion about the true purpose of the experiment.

Results

For each subject, we obtained several scores. First we obtained two accuracy scores, one for the "male" items and one for the "female" items. As before, women were significantly more accurate on female items than males were (77% vs. 51%, z = 3.33, p < .01), whereas the reverse was true for male items (57% vs. 73%, z = 2.05, p < .05).

Next, we obtained two suggestibility scores, ranging from 0 to 2, depending on how many of the suggested responses a person gave on the final test to the male and female critical items. These data are shown in Table 3. Two chi-square tests revealed that the sexes performed differently on both the female and the male items, χ²(2) = 16.58, p < .01, for the male items, and χ²(2) = 13.97, p < .01, for the female items. As can be seen in Table 3, women were more suggestible than men on male-oriented items, whereas the reverse was true for the female-oriented items.

General Discussion

To reiterate the major results to emerge from these experiments, we first noted that when subjects viewed a complex incident, overall accuracy was not related either to intelligence or to overall suggestibility. However, accuracy on a specific item seemed to lead to an improved ability to resist a suggestion about that specific item. Where a person looks is crucial for determining how accurate and how suggestible that person will be in any given situation. If a particular detail is carefully attended to, accuracy on this detail will be high and suggestibility will be low.

The differential performance of men and women can be viewed in light of this analysis. Females and males tend to be accurate on different types of items, perhaps indicating their differential interest in particular items and corresponding differential amounts of
attention paid to those items. One consequence of this differential interest is that there is a difference in the ease with which misleading information can be supplied to men and women about these specific items. This reasoning is in accord with Eagly (1978), who pointed out in her review of sex differences in the related area of influenceability of attitudes that “individuals are more readily influenced to the extent that they lack information about a topic or regard it as trivial and unimportant” (p. 96). The specific items, then, are critical. One could select a set that would favor females or a different set that would favor males. The fact that past research sometimes shows males to be more accurate than females may be largely due to the specific items on which these males and females were tested. In a thorough review of the literature, Maccoby and Jacklin (1974) concluded that stable sex differences do not exist in common laboratory memory tasks. We go one step further: Predictable sex differences can occur depending on the particular items that one chooses to be critical.

In the real world, people are sometimes exposed to events for which precise memory is required. Furthermore, after the event is over, the witness can be exposed to new, related information that is incorporated into the witness’s recollection. The postevent information can come from being questioned by an investigator, from overhearing or engaging in a conversation, from reading a newspaper article, or from any of the numerous ways in which we naturally acquire information. People come to believe that they have actually witnessed details that they have actually only heard about later. This has been known at least since the days of the classic studies of Marston (1924) and Munsterberg (1908). Munsterberg (1908) asserted that “one factor more than anything else devastates memory and plays havoc with our best intended recollections: that is the power of suggestion” (p. 67). Marston (1924) commented on one witness’ unusual suggestibility to mischievously motivated coaching:

One of the most interesting details of the results of this experiment was the extraordinary testimony given by one of the witnesses based, as was afterward revealed, upon deliberate suggestions made to him in the witness-room by the other witnesses awaiting their turn to testify. The men were evidently comparing their memories of the incident, to start with, and began to exaggerate and make fun of each other’s alleged mistakes. Finding Mr. A. hypersuggestible, they combined to put into his mind the most absurd and improbable details. When called before the juries, in fact, Mr. A. actually testified that the actor in the incident in issue wore one high, black shoe, and one low, tan shoe; that he had some sort of gold medal in the button-hole of a bright scarlet coat, and that he wore a flaming red tie, knotted in spread-eagle fashion, outside coat and vest! . . . One woman juror was so impressed by the extreme self-confidence shown by Mr. A. on the stand that she came to the conclusion that he was the only reliable witness out of the 12 men called (p. 24).

It is the business of lawyers, judges, investigators, and social scientists to extract information from witnesses and to get some idea of the truth of what happened. Knowing individual factors that might relate to the quality of an eyewitness account becomes especially important when an investigator must attach a value to a given eyewitness account or evaluate two sometimes contradictory accounts. This task becomes easier if one knows something about the prior interests and orientations of the particular witness being evaluated. For example, if the witness is a male who has had a long interest in automobiles, one might have more faith in a report about that type of detail. Further research along these lines will have significant value in improving our ability to tell the good witness from the bad one in any given situation.

References

Received November 15, 1978

Manuscripts Accepted

(Continued from page 298)

Influence of Strong versus Weak Fair Employment Policies and Applicant's Sex on Selection Decisions and Salary Recommendations. Benson Rosen (Graduate School of Business Administration, Carroll Hall 012A, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516) and Mary F. Mericle.

Mixed Standard Rating Scale: A Consistent System for Numerically Coding Inconsistent Response Combination. Frank E. Saal (Department of Psychology, Anderson Hall, Kansas State University, Manhattan, Kansas 66506).

Job Attitudes of Part-Time and Full-Time Employees. Howard E. Miller (Department of Psychology, University of Illinois, Champaign, Illinois 61820) and James R. Terborg.

Accuracy, Confidence, and Juror Perceptions in Eyewitness Identification. Gary L. Wells (Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9), R. C. L. Lindsay, and Tamara J. Ferguson.